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ABSTRACT

This is the fourth interim report of a study whose purpose is to

develop and apply a gen'eralized theory of the effects of coupling the

modes of propagation such as occur in distributed microwave devices.

In Sec. I, we review the entire work done so far in this study.

This review is in descriptive, rather than mathematical, terms to

indicate the purposes and interrelations of the various parts of the

program.

In Sec. II, the analysis of the class of non-uniform systems that

we have been studying is carried further. This is the class of systems

such th.t the derivative of the system matrix is expressible as a

commutator of the system matrix with another operator. This class

includes many of the interesting non-uniform systems, and it is a class

that is tractable for analysis.

This analysis has been here extended in several directions. In

Sec. II-B, certain simpler subclasses are studied in detail. The

2 by 2 case with hermitian system matrix is discussed first, and thea

the general 2 by 2 case. The class of systems such that the system

matrix can be regarded as embedded in a space that is a representation

of the general rotation group is then studied. Two formalisms are

used, one using the infinitesimal transformations of the rotation group,

and the other the corresponding spin matrices. The results are equiv-

alent, but the difference of form may be useful.

In Sec. II-C we consider the general solution of the equation

dR
- j iR, A)

dz

for A in terms of R and (dR/dz). The basic mathematical problem,

expressc-! in abstract and general terms, is given in the two appendixes

in which we consider, first, when and how the equation
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can be solved for v, when T is a singular operator, and then some of

the general properties of the commutator operator. These results are

used to solve the system equation for the operator A under very general

conditions. Thus we have solved the problem of actually finding the

appropriate commutator operator for a non-uniform system of this type.

In Sec. II-D, the solution of such systems is considered. We show

that it is possible to put such systems into a canonical form in which

the simplicities of the system are exploited. The proceedure is in

general to find a sequence of rotating axes in terms of which the system

non-uniformity is progressively eliminated. The equations that determine

these axes are given explicitly.

This work is in general, abstract and formal, but has been necessary

to provide a foundation for the study of the practical possibilities of

mode coupling by appropriately designed non-uniformity.
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I SUmwgY OF WORK

In this section we shall review the work of the contract to date,
attempting to put the various pieces of reported results into proper

relation with each other.

The purpose of the contract, as stated in the contract, is to
"advance our engineering design knowledge and theoretical understanding

of electron beam microwave devices through the derivation and use of

the theory of coupling between the modes of propagation existing in a

beam-type device." As stated in the original proposal, the broad

objective was"to provide the analytic structure whereby existing

design concepts can be interrelated and evaluated and new concepts

generated." We also stated that our general approach would be an

attempt to "exploit some of the more advanced techniques of matrix
algebra and abstract vector spaces."

In carrying out this objective, our work has been directed towards

two broad classes of structures-the sectionally uniform and the non-

uniform types.

By a "uniform" system or section we mean one whose design parameters

do not change along the length. The electron beam velocity does not

change along the distance. The impedance and propagation constant of

the transmission line are constant. The magnetic field, if one is

present, is the same at all points being considered. And so on. A

non-uniform system or section is one in which some one or more of these

parameters varies along the axis.

Most existing devices either are "sectionally uniform" or can be

treated as if they were. A travelling wave tube may be considered as

being built of sections which are uniform. Even if the tube is focused

by a periodic magnetic field, the periodicity is carefully chosen so

that the results will approximate the behavior the tube would have if

a single solenoidal field was used.

One exception is the parametric amplifier with travelling pump

signal. The pump signal in effect imposes a time dependence, at the



pump frequency, of certain of the parameters of the system. Further,
if the pump wave is travelling, there is a variation of phase along

the interaction apace. This, then is a "non-uniform" system.

There is, furthermore, strong indication that a properly chosen

non-uniformity can lead to new and potentially interesting effects.

There is, for example, experimental evidence suggesting that

variation, with z, of the magnetic or electric field under crossed

field conditions may provide strong amplification. If so, this might

permit strong amplification with a very simple physical structure.

Such an effect might be useful for several purposes. It is worth

considering, for example, if there is need of compact amplifiers for

use at low frequencies. It would be a good possibility for millimeter

or submillimeter wave amplification, except that in this region it

implies an average magnetic field strength that is probably impractical.

However, the thought does illustrate the potentialities that exist of

using a controlled non-uniformity to achieve a desired mode coupling.

The analysis of the effects of non-uniformity is still in a very

unsatisfactory state. Certain situations of particular interest-

e.g., periodic focusing and parametric interaction-have been analyzed

by special methods. But no general theory exists. There is no theory

that will tell us what is possible in such systems, or that will give

us any indications at all of how the possible can be achieved.

Thus, there appears to be, here, a large area of possible design

that has not been exploited to any significant degree.

It is then in these two areas that we have concentrated our

attention.

A. SECTIONALLY UNIFORM DEVICES

The technique for the analysis of the mode couplings that can

occur in structures that are sectionally uniform, or that can be so

approximated, was in fairly good shape at the start of the program.

Methods of analysis that are always applicable, at least in principle,

were available. The principal phenomena that are possible in such

systems were known. And a good deal was known, for the simpler cases

at least, about the conditions under which a given phenomenon such as

amplification or power transfer will occur.
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Although the principal phenomena that are possible and the condi-

tions for their occurrence were known, the material was widely scattered

in the literature and in our work under a previous contract [AF33(616)-

5803). Nowhere, it seemed, had it been brought together and codified

into a single coherent theory.

One of the specific objectives of this contract as indicated in the

contract itself, was to correct this deficiency. Therefore, during the

contract we prepared and issued Technical Note I, "Topological Analysis

of Sectionally Uniform and Parametric Systems." This covers in a quali-

tative and semi-quantitative way the phenomena that are possible as a

result of the uniform coupling of modes by pairs. In so doing, we have

provided a method for diagraming most existing devices in a way that

exhibits the principal local effects and allows one to deduce the nature

of the principal over-all consequences.

The report was difficult to write because of the danger of swamping

the reader in a mass of definitions and mathematical details. The

precise definition of terms and the essential mathematical structure

could not be avoided without making the report an essentially super-

ficial one. But neither could they be allowed to dominate the report

without making the report useful only to the expert in the field-who

presumably knows the material anyway. The report was, therefore,

written with great care to present the essential features of the theory

first, filling in the details later and in the Appendixes. It is hoped

that, by this means, it has been put into a form that will be useful.

The Technical Note was primarily concerned with the pairwise

coupling of modes. The simultaneous coupling of a larger group of

modes was avoided, except for the inclusion of what we call "chain

coupling," in Appendix C. This is a more general type of coupling

that is, mathematically, closely related to pairwise coupling. (Pair-

wise coupling can be regarded as the chain coupling of a chain of

length two.) It was included in the Technical Note because its math-

ematical development includes, without being much more complicated

than, the necessary mathematical development for simple pairwise

coupling. Also, it includes situations that may exist as disrupting

phenomena in present devices.



The theory of chain coupling was developed and reported originally

in Interim Report 2, Seca. II-B and II-C. The version of this theory

in Appendix C of the Technical Note is a rewrite of these, and contains

essentially the same material.

The Technical Note also included the theory and effect of pairwise

parametric -coupling. This is a non-uniform situation, but one which

can be handled in a manner that is closely related to the procedures

for uniform systems. Also, of course, parametric coupling is used

in a very important class of existing devices. Since it was the in-

tention in the Technical Note to bring together, insofar as possible,

all the coupled mode theory necessary to the qualitative understanding

of all existing linear electron beam devices, it was appropriate that

parametric theory should be included.

A different approach to the study of uniform systems was developed

and reported in Interim Report 1, Sec. II-A. This used what we called

the "System Function Characteristic." This procedure is somewhat

analogous to the transfer function used in network theory for calculation

transient responses. It appears to be particularly useful in the

analysis of parametric situations in which an indefinitely large number

of frequencies may be involved.

Application of this method was made to a device in which two

pump signals are imposed simultaneously. Under suitable conditions,

this will couple the original signal to successively higher parametric

harmonics as the process continues.

We have suggested that this might be a useful device for the

generation of high frequencies by harmonic interaction. A final
evaluation of the possibilities here has not yet been made, but the

prospects do look interesting.

Finally, we should note one other area of interest that has not
yet been tackled at all. This is the case where statistical methods

are required. This may happen because of the very large number of

modes that may be involved, such as in the"laser." Or it may

happen because of the statistical nature of the processes that are

involved. There is, for example, the possibility of using noise to

pump a parametric amplifier.
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There is need for techniques to handle these problems. No effort

has as yet been made in this direction, although the group theoretic

methods to be discussed shortly may provide a useful starting point.

However, specific attention should be given to this class of problems

when time permits.

B. NON-UNIFORM SYSTEMS

The other major area that has concerned us is the analysis of non-

uniform systems. No general understanding exists of the possibilities

of such systems. Only certain rather narrowly restricted types of non-

uniform systems, such as those using conventional parametric interaction,

have been analyzed. And yet there is evidence that non-uniformity can

provide the means for obtaining some badly needed design capabilities

such as strong amplification without excessively intricate structure.

We have made substantial progress on this problem although it must

be admitted that the results are so far quite fragmented and have not

yet been coordinated into a single, useful body of theory.

The earliest approach was by an adaptation of the methods of

classical physics. This was reported in Interim Report 1, Sec. Il-B.

"A Formal Lagrangian Function and Related Concepts." It was shown

there that it was possible to define a Lagrangian Function and a

Hlamiltonian, and to obtain from them such related concepts as the

Poisson Bracket and the canonical equations of motion. It was also

found possible to define appropriate contact or canonical transformations,
and to classify systems according to their infinitesmal contact trans-

formations. Although these definitions are formal-in the sense that

the Hamiltonian, for example, has little if any relation to the total

energy of the system-this approach appears to open the way to the

employment of the various methods that have proven so powerful in

classical and quantum mechanics.

We have not yet carried this approach further, mainly because of

the pressure of other ideas. It is, however, a technique that we con-

tinue to regard hopefully, and that we intend to return to at some

future time.

Another approach, which was partly generated out of the preceding

one, is the use of group theoretic methods. This was reported in
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Interim Report 3, Sec. I. It arose out of the formal methodesince the

infinitesmal contact transformations of a system do form a group that

in an appropriate sense describes the system.

The group theoretic description of a system in primarily useful

for the purposes of classification and representation. At least this

has been the principal use of this approach so far. It has proven to

be a powerful method of obtaining a convenient representation for

certain types of non-uniform systems. As such, it provides the means

for the further analysis of such systems.

It can also be added that these methods are likely to be highly

important when we come to develop a statistical theory of systems with

large numbers of modes, such as"lasers." In such systems, the princi-

pal information we are likely to have regarding existing couplings will

derive from symmetry considerations-that is, from group theoretic

properties. It seems likely, therefore, that the problem can be

made most tractable by treating it in at least a group theoretic type

of representation.

The third approach, which seems to be in the process of yielding

important results, concerns the analysit of a special class of non-

uniform systems. This class includes parametric systems, the exponen-

tially tapered transmission line, and most of the systems which have

been individually solved to date. It also includes much more compli-

cated systems. It is a class, however, that has some very important

properties that make its analysis tractable.

This class of systems is important, not only for the specific

devices that it includes, but also as an analyzable class of consider-

able variety. Thus, we can use it to explore what is possible in

non-uniform systems and to determine conditions under which a given

type of behavior can be obtained.

The class referred to is described mathematically as that in

which the derivative of the system operator is expressible as a

commutator of the operator with another operator (cf. Interim Report 2,

Sec. Il-A). It may also be said to be the class in which the behavior

of the system is ensentially rotational, although this statement would

require considerable amplification in terms of the geometry of the



vector space involved, and the meaning of "rotation" in this connection.

This viewpoint is at least partly developed and exploited in Sec. I1-B

below.

The first results and the beginning of recognition of the full

class were reported in Interim Report 2, Sec. II-A. This was carried

on, and the full class defined, in Interim Report 3, Sec. II. Section II

of the present report continues various aspects of this analysis.

This analysis is still somewhat fragmented in that we are not yet

ready to pull together the pieces into a coherent body of theory. It

is also still quite incomplete in that the work so far has been dealing

with various aspects of the underlying theory, with only minor attention

being given to practical results. This has been necessary because of

the apparently almost complete lack of previous work on this class of

problems. Hopefully, however, we are now about ready to study directly

the practical problems that are the reason for our interest in this

field.

It is dangerous to predict progress in an area about which so

little is known as this one. However, it does appear that there is

reason to be hopeful that we are now in a position to make substantial

progress in the understanding of how non-uniformity can be used for

practical purposes.



II ANALYSIS OF NON-UNIFOIW SYSTIMS

A. INTRODUCTION AND SUMMARY

We shall, in the various sections that follow, continue our analysis
of non-uniform systems of the restricted class we have considered in
Sec. II-A of Interim Report 2 and Sec. II of Interim Report 3. A
non-uniform system is one which is described by a vector differential

equation of the form:

d - -jR(z)x(z) (1)
dz

where x is the "state vector" represented as a column matrix describing

the state of the system at the position z, and R is the system matrix.

The system is non-uniform if R is dependent on z.1

The particular class of systems that we will consider are those for
which n(z), although not constant, is such that its derivative is ex-

pressible as the commutator of IR with some matrix A:

dRdH - j[R, A] - j(RA - AR) (2)

Our interest in this class arises from the fact, discussed in Sec. II
of Interim Report 3, that certain subclasses of this class are both
practically important and explicitly soluble. Thus, this class may be a
useful one for exploring what can be done with non-uniformity in phys-
ical systems. Since use is made of non-uniformity in some important

systems such as distributed parametric amplifiers, it is not unreasonable

to hope that the study of such systems may open the way to important

new devices.

As usual, we shall indicate colmn vectors by bold faced lower case letters, and metrices by bold faced
capital letters. We shell indicate the complex conjugate by (*), ad the hebritiam conjugate, or
complex conjugate treaspose, by (t).
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The matrix, A, is not well defined by Eq. (2). We can add to A

any matrix that commutes with N, without affecting R in Eq. (2). In

particular, we can add to A any function of IR and z, f(f, z), which is

well defined [specifically, f(u, z) is a suitable generating function if

for any value of z, f(u, z), considered as a function of u, is analytic

in a simply connected region that includes the eigenvalues of R at that

value of z].

We showed, in Sec. II-A of Interim Report 2, that a necessary and

sufficient condition for the existence of such an A is that the eigen-

values and structure of R be constant. This does not, however, indicate

whether or not A can be chosen to be constant. If, however, an A can

be found which is constant, then Eq. (1) is explicitly soluble.

In Sec. II of Interim Report 3, we showed that this process is

generalizable. In particular, if no constant A can be found for a

given 3, we may still be able to find an A that has constant eigenvalues

and structure so that its derivative is expressible as the commutator

with a matrix B:

dA
- . ,(A, B] (3)
dz

If a constant B can be found, then Eq. (1) is still explicitly

soluble. If not, but if B can be chosen so that is obeys the same type

of equation,

A j[B, C] (4)
dz

and if C can be chosen to be constant, then again an explicit solution

to Eq. (1) is obtainable, although one that involves an infinite series.

Thus this class of systems does include some soluble subclasses

of considerable variety, and the whole class appears to have some in-

teresting and useful simplicities, compared to the whole class of

non-uniform systems.

The immediate need in the analysis of this class is for means of

determining an A from the properties of N and its derivatives to provide

a tool for the determination of the simplest A-constant, if possible,

otherwise expandable according to Eq. (3).



An expression for an A was given in Sec. I1-A of Interim Report 2

in terms of the matrix S(z) which reduces R to canonical form-i.e., the

matrix of eigenvectors of R. Another expression was given in Sec. II of

Interim Report 3, expressing A in terms of the dyads formed from the

eigenvectors and generalized eigenvectors of R and their derivatives.

Neither of these expressions is entirely satisfactory for deeper

analysis. Both depend explicitly on the eigenvectors (and, if necessary,

generalized eigenvectors). The eigenvectors, however, may be multiplied

by arbitrary scalar functions of z without disturbing the eigenvector

properties. It is this fact that leads to the arbitrariness of A. How-

ever, there does not appear to be any simple relation between a

z-dependent renormalization of the eigenvectors and the resultant change

of A. It is not clear, therefore, how to specify the normalization of

the eigenvectors so as to obtain an A matrix showing any desired prop-

erties.

In an effort to overcome this difficulty, we have tackled the prob-

lem again of determining A in Eq. (2) given R. This time we have

sought a specification of A, or of a possible A, in terms only of R

and its derivative.

In Sec. Il-B of the present report, this problem is solved for various

restricted classes of R, of increasing complexity. We are able, for these

classes, not only to obtain explicitly a possible A, but have gone

further and have been able to find A's that are themselves expandable

in the form of Eq. (3). Thus, for these classes, we have an explicit

procedure for developing a chain of equations of the form of Eqs. (2),

(3), (4), etc.

This solution has an importance beyond the purely theoretic. It

includes the case when the non-uniformity introduces a pairwise coupling

of the modes of the uniform system. It includes, then, phenomena of

considerable practical importance. In preparation for the detailed in-

vestigation of these possibilities, we have, therefore, developed the

explicit solutions in different but equivalent representations that appear

to be of possible interest.

In Sec. II-C of the present report we consider the more general

class of systems, restricted only by the condition that R is of simple

structure. In this case, we are able to obtain an explicit solution

III



for A. This does not complete the work needed, since the A so found

is not, in general, expandable in the form of Eq. (3). We have not as

yet been able to find a general expression for an expandable A. Indeed,

we have not yet proven that an expandable A always exists, although we

have gone far enough to feel fairly confident of the truth of this

conjecture. Nevertheless, the development of an explicit expression

for an A, given R and R' and involving only the eigenvalues and not

the eigenvectors of 8 does appear to be a substantial step forward.

In the course of developing this expression for an A, we have been

led to investigate the "inversion" of a general singular operator.

Quotation marks are used here, because a singular operator, by defini-

tion, has no inverse. Within the restricted context in which the
problem arises, however, there does exist an operator that has the

properties of an inverse. It is in this sense that we have investigated

the problem using the techniques of abstract finitely dimensioned linear

algebras. The work is here given in Appendix A.

This work also leads to a more general solution of Eq. (2) for A.

Specifically, it permits us to remove the restriction, in Sec. II-C,

that R be of simple structure. Since this restriction is of little

practical importance, the development of this generalization is re-

legated to Appendix B. However, it may be noted that the resultant
expression for A, even when R is of simple structure so that Sec. I-C
applies, is not the same. (A, it will be recalled, has some arbitrari-

ness to it.) It is possible that this more general solution may be
of direct interest even where its generality is not important. This is

speculation at this point, but the possibility should be kept in mind.

In Sec. 1I-D, we have undertaken the formalization and systemization

of the process of solution of a chain of equations of the form of

Eqs. (2), (3), (4), etc. The method of solution is that used in Interim

Report 3, Sec. II-D. We find that we are able to interpret the process

as a succession of z-dependent changes of basis. The transformation

operators that accomplish this are chosen to obey a set of equations

that we will call the canonical transformation equations of the chain.

B. NON-UNIFORM COUPLING BY PAIRS OF MODES

We have, in Interim |leports 2 and 3, considered non-uniform systems

such that

12



" "jR(z)Zzt) (5)dz

and

j dM - R A) j (jA, R3 (6)
dz

j[B, A] (7)

dz

j JC' B] (8)
dz

etc.,

where the sequence terminates when and if a constant matrix is reached.

We have been interested in such systems primarily because they are much

simpler than the general non-uniform systems, and yet evidently retain

much of the potentailities of non-uniformity.

If A can be chosen to be constant, then the system is a general-

ization of the exponentially tapered transmission line, and is directly

soluble. If A cannot be taken as constant, but 0 can be, then the system

is still explicitly soluble in closed form. If C is constant and the

others not, then it is still explicitly soluble, although the solution

involves an infinite sum. Thus, while the complexity increases rapidly,

as we increase the length of thesequence of commutator relations, Eqs. (5),

(6), (7), (8), etc., the problem still retains a degree of tractability.

The practical importance of these systems lies in the fact that they

include systems in which mode coupling is induced by an appropriate

non-uniformity of the system parameters.

We shall, in this section, analyze in detail systems of this type

in which only a pair of modes is involved. This is probably the most

interesting case from the practical point of view. The generalization

of the analysis to more complex situations will be deferred until later.

We shall first discuss the situation when IN is a 2 x 2 hermitian

matrix. This is the simplest situation. Historically, its analysis

13



provided the concepts that opened the way to the more general case. It

is hoped that its presentation here may provide similar insight to others.

We shall follow this, then, with an analysis, first, of the situa-

tion with a general 2x2 matrix, and then of the situation when P is

isomorphic to the rotation group. In the final case, we achieve a con-

siderable degree of generality, although still not the most general

case we would like to be able to handle.

i. K I, BHERMITIAN, n - 2

We consider the case when R(z) is restricted to be a 2 x 2 matrix

that is hermitian at all z. In our usual terminology, R is K-hermitian,

with K 1 I, the identity matrix.

We have proven, that, for Eq. (6) to hold at all, it is necessary

and sufficient that the eigenvalues of R be constant, with the

z-dependence of R involving only a change of direction of its eigen-

vectors.

We have also shown that if R is K-hermitian, we can so choose

A that it is everywhere K-hermitian. The matrix A is not completely

determined by Eq. (6). To a given A, we can add any matrix function

of z that commutes with R, without changing Eq. (6). It is for this

reason that we can only say that A can be chosen to be everywhere

K-hermitian, not that it must be.

If an A exists-i.e., R has constant eigenvalues-then the first

question we ask is, does a constant A exist? If so, and if we can

find it, the problem is solved. If a constant A does not exist, then

our next question is, does an A with constant eigenvalues exist? If

so, we can write Eq. (7) and begin all over to examine the properties

of B. If it is impossible to find an A that is either constant, or

has constant eigenvalues, then the whole procedure fails and we must
seek a solution by other means.

The central problem of this mode of analysis is the question of
whether or not it is always possible to so choose A that its eigen-

values are constant, so that we can then find a 13 that will fit Eq. (7).

It is with this problem that we are mainly concerned here.

If we write R as

14



(9)

then the requirement that R be hermitian specifies that 0 and 5 be real

functions of z, and that e be the complex conjugate of 0.

The characteristic equation of Eq. (9) is

X2 - (0 + )k + (9-a) u 0 (10)

If the roots of Eq. (10), the eigenvalues of R, are constant, then

Eq. (10) must be constant, or the trace and the determinant of R must

be constant. Hence Eq. (9) can be written as

g- jh x - f)

where x is a real constant, and f, g, and h are real functions of z

with the supplementary condition that

f2 + g2 + h2 a 2  (12)

a being constant.

The matrix R of Eq. (11) with the constraint of Eq. (12) is the

most general form of hermitian R with constant eigenvalues and which

therefore is expressible as Eq. (6).

We can look for an A of the same form as Eq. (11).

A 
M : (13)
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where the constraint that

F2+G2 + H2 ( 14)

will be applied later.

If we substitute Eqs. (11) and (13) in Eq. (6), we find that we

require

2(hG - gH)

g' - 2(fH - hF)

h' - 2(gF - fG) (15)

where the prime means (d/dz).

We may note that a and M do not enter into these equations or into

Eqs. (12) and (14). The constant a is part of R, but does not affect

the choice of A. The constant M can be chosen arbitrarily and might

as well be taken as zero.

If, now, we define the 3-vectors:

V U - F + AG + kff (16)

where i, j, k are the three unit vectors of a cartesian coordinate

system, then Eq. (15) can be written as

u - 2 u x v (17)

In other words, the right side of Eq. (15) is a cross product

relation.

Equations (12) and (14) can, then, be written as

u * u a a2 (18)

V " V g b2 (19)
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Equation (18) is obtainable from Eq. (17), and hence adds nothing

new.

Equation (17) states that u' is perpendicular to u and v. The

vector v, then, must have a component that is perpendicular to u, but

may have a parallel component. It is perpendicular to u'. It is

reasonable, therefore, to consider a solution for v of the form

v - au x U + pu (20)

where a and p are scalar constants or functions to be determined.

If we substitute Eq. (20) and in Eq. (17) we see that

. - 2du x (u x u')

• - 2a•(u u')u - (u u)u'}

. + 20(u U)u'

- + (a 2 u'. (21)

Hence Eq. (17) is satisfied if a is constant and

a • -- (22)
a2 2

Substituting Eq. (20) in Eq. (19), we find

b2  - 02(u x u') u x u') + 2ap(u x u') u + p u u

C O (u u)(u' * u') - (U U•)(U u')) + a2p2

= 1L (u' U') + a2 p2  (23)

4a 2

or

P2  = (b 2 /a 2 ) - (, u')/(4a4) (24)
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and p is determined as a function of z. The constant b must, of

course, be taken as sufficiently large so that p2 is nowhere negative

if A is to be hermitian.

Hence, it is possible to determine a matrix A that satisfies

Eq. (6) and that has constant eigenvalues so that it is expandable as

Eq. (7).

We shall not pursue this further, here. Our main objectives were

to find a method that will allow us to handle the more general problem,

and to gain insight into the significance of Eq. (6) itself. We have,

hopefully, accomplished these objectives in discovering that we are

dealing with an operator that can be considered as the cross product

of an entity- the vector u-time the operand. This suggests that the

operator j[-, R) be considered as, in some sense, the cross product of

R and the operand. It suggests, then, that we consider whether this

thought will allow us to tackle the more general case.

2. Tst GEwERAL 2 x 2 B MATnIX

We consider, now, the case where R is a 2 x 2 matrix function of

z. Then the Cayley-Hamilton Theorem states that there must exist an a

and b such that

R2 - oR + bl (25)

Furthmore, a and b must be constants if the eigenvalues are to be

constant.

If, now, we regard the operator j[-,R) as analogous to the operator

(U X -), then Eq. (6) becomes analogous to Eq. (17). The solution

to Eq. (17) was found by considering a form expressible as Eq. (20).

The analogous form would then be

A - -ja[R', RI + pR + qJ (26)

For this to satisfy Eq. (6), we must have

R' - a(R'R' - 2R'R + R82') (27)
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Now using Eq. (25) and its derivative

*' + WE (28)

we find that

I'R2 -21'R R'R'

SR'R + R2R' 2R(aR' -R')

V R'R2 + 3R2R' - 2a1M'

a 3'(aR + bi) + 3(aR + bI)B' - 2a*'

a .(R' + R'R) + 4bf'

"a (a2 + 4b)g' (29)

This assumes that (aW + 4b) does not vanish. There are cases in
which it does vanish, so that Eq. (26) fails. These, however, are
limiting cases and are, furthermore, soluble by other methods. In
particular, it appears that, in these cases, IR always commutes with
its integral, so that

x(z) u [exp -jjR(z)dz)x(O)

is the solution of Eq. (5)

We will assume that a2 + 4b does not vanish. If, then, we set

a l/(a + 4b) (30)

we see that Eq. (26) satisfies Eq. (6). We note that a is necessarily

constant.

Now, from Eq. (26), we have that

A2 - -a2[3t', R) 2 - jap{[R', R3R + R(i', R])

- 2jaq[B'. R] + (pP + qI)' (31)
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Considering these terms in turn, with the aid of Eqs. (25) and

(28), we find that

[R'R]2 - R'M'R- M, RB - RmRIm +MOM,

a R'K(aR' - M') - (aR' - R'R)(oR' - l')

- R'R2R' + (oR' - R'R)M'

a - 4W'R3R + 44R'M' - a2R'2

a - 4R'(aR + bI)R' + 4aR'R' - a2 R*2

a - (a0 + 4b)R'

= (1/a)R' 2  (32)

and

{JR', RIR + R[R', R]} - R'R 2 - R2R'

- R°(aR + bI) - (aR + bI)R'

= a(R'R - B')

- a[R', RI

= ja(1/a)(A- pR - q]) (33)
and

IR', R] - j(1/a)(A - pR - qI) (34)

and

(pR + qJ)2  - p2 (aR + bI) + 2pqR + q21

* (4p 2 + 2pq)R + (bp2 + q2)I . (35)

Since R' is also 2 x 2, it must obey its characteristic equation,
so that there must exist functions f and g, of z such that



312 - fJ + g11  . (36)

However, if we premultiply Eq. (28) by R' and subtract it from

Eq. (28) post-multiplied by R', we find that

l'2 - R'2R (37)

so that R'2 must commute with R. If R' commutes with R, the problem

is trivial. It is simple to show, then, that either R is constant or

(a2 + 4b) is zero. If R' does not commute with R, then, substituting

Eq. (36) in Eq. (37)

gn' gR'R (38)

so that g must vanish, and

R12 fI (39)

Hence, Eq. (32) becomes

[W, Ip]2 - (f/C)I . (40)

If we collect these results together by putting Eqs. (40), (33),

(34), and (35) into Eq. (31), we find that the terms in R cancel and we

are left with

A2  - (ap + 2q)A + (bp 2 - q - apq - 1f)I (41)

We can now choose p and q so that the coefficients are constants.

One convenient class of solutions is obtained by setting

I
q - ap (42)2

Then

A2 + cl - 0 (43)
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where

c -bp' + q' + apq + af

S (a + 4b)p 2 + af
4

* + (p 2 /40) + alf (44)

and

p • {4a(c - (Xf))}/ 2  (45)

For an arbitrary constant c, then, Eqs. (45) and (42) determine a

p and q such that A, from Eq. (26), has constant eigenvalues and is

expandable in the form of Eq. (7).

3. R ISOMORPHIC TO THE ROTATIOm GROUP

We shall now consider the problem in a still more abstract manner

so as to obtain greater generality. Specifically, we shall find that we

can obtain these same results if B is embedded in a representation of

the rotation group.

We shall not here discuss in detail what is the significance of

requiring that R be embedded in a representation of the rotation group.

For this, reference may be made to Interim Report 3, Sec. I. We shall

only assert the requirement that there shall exist the set of infinites-

imal transformations, Mp, M2, and M3 such that R is expandable in terms

of them:

H = lYMI + Y2M2 + Y3 M3  (46)

where MI, M2, and M3 ar# constant so that the entire z-dependence of R

is contained in the scalars Y1, y 2, and Y 3. We require also that these

infinitesimal transformation be such that they obey the commutation rules,

[11 M31 - -MI

[M2 M3] - M2

C[N M2] - -2M 3  (47)
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We can also add to Eq. (46) any constant matrix without changing

what follows to any important degree, although it does complicate the

procedures necessary to obtain an A with constant eigenvalues. (See

the Appendix of Interim Report 3 for the elimination of such terms.)

It should be noted that the requirement that N be embedded in

a representation of the rotation group includes cases in which R is of

any desired dimensionality. As discussed in Interim Report 3, Sec. I,

there are representations of the rotation group involving n x n matrices,

where n is any positive integer. The requirement does imply, as

indicated by Eq. (46), that the z-dependence of R shall not require

more than three independent functions of z, but this is all.

Since the M's of Eq. (46) are constant, we have from Eq. (46)

that

d . 8lM + 8 2 1 + b M (48)

where

d, - dy,/dz (49)

Our natural course of action at this point would be to determine

how we may assure that n has constant eigenvalues. It is not evident

how to do this, however, and we will have to obtain this condition

indirectly.

We assume, now that A is also expressible in the M's,

A • a 1MA + e 2 M2 +am 3 N (50)

TThen we find that

[A, R] . (aIt2 - a 2yI)[MP, M2] 4(6 1 Y3 - a3YI)[MP, MS)

+(a 2Y 3 - " 3Y2 )[M 2, M3)

a -2(a 1 Y 2 - 1 2yi)M$ - (SlY3 - " 3Yd)M1

+ (a 2 Y 3 -- X3 ^ 2 )M2 (51)
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or that

8 1 " j(-*aY 3 + 1 3yd)

82 a -*(a2Ys - asv2 )

* - -j(-2alY2 + 2ayy) • (52)

We find from Eq. (52), that

8
8 I2 + a 2' 2 3Y3 " 0 . (53)

Equation (53) is the necessary and sufficient condition on R for

Eq. (52) to have a non-trivial solution for the Vas. It is therefore

the necessary and sufficient condition that dR/dz be expressible as a

commutator with an A expressible as Eq. (50), and this, therefore, is

a sufficient condition for R to have constant eigenvalues.

Substituting Eq. (49) and integrating, we find that Eq. (53) re-

quires that

3 4Kly2 (54)

where 7 is constant. Equation (54) is also sufficient to assure that

the eigenvalues of 8 are constant.

We have shown that if Eq. (54) is satisfied, a solution of Eq. (52)

for the a's exists; the solution is not unique, however. One solution,

as can be easily verified by substitution, is given by:

= -jk(-b 1 3

*I " -jk(S2y3 - 6v) (56)

0 * -jk(-2• 1 y2 + 282•Y) (57)

where

k u- -- (58)
K
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Then

A0  - aMI + A'2 + d3f (S9)

is a particular solution, although not, in general, one with constant

eigenvalues.

The matrix A will now be expandable as Eq. (7) if its coefficients

satisfy the equivalent of Eq. (54):

a - 4al -2  
(60)

where A is constant.

For this purpose, we let

a, - (j/K)(-6 1 7 3 + 63YI) + Py1

0 2  -(j/Q)( 2Y3 -b3y) + PT2

13  ' (j/K)(-26 1 1 2 + 282YI) + Py 3 . (61)

That is, we let A be (A0 + pl) where p is a scalar function of z, to

be determined. The addition of pR to A0 does not affect the commutator.

We note that

(-2b 1 y 2 + 26 2 y 1 ) 2 
- 4(• 1 Y 3 + ' 3^ 1 )(62y 3 - b3y2 )

= -( - 4 1b2)(y - 4yIY2 ) + 4(b1-b 2 + 2y - 3y

--K(2- 46 b 2 ) (62)

so that

-2Y3 (-262 + 2 b2y) -tY 2 (-6 1y3 + b3yI) - 4Y 1 (
6
2 Y 3 - b3y2 ) u 0

(63)
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Hence

aS - 4a,02 .- (1/K)(1 -- 48,82) + Kp2 (64)

and A. is constant if we set

p - {(,/K) - (83 - 48 1 ,8)/K) 1 /2 (65)

With this function, A has eigenvalues and its derivative is ex-

pressible in the form of Eq. (7). Since A is, now, expressed as an

isomorphism of the rotation group, the process can be continued.

The only limiting condition, other than those already stated, is

that K shall not anywhere vanish.

4. B EXPANDED IN PAULI SPIN MATRICES

It may also be useful, at times, to have these results expressed

in terms of the Pauli spin matrices. These may be taken as the matrices:

1 0 0

3 ° 04i (10 )
1/1 0  ( (66)

The particular form of Eq. (66) is not significant for our purposes

here. What is significant is the commutation rules.

[ 0 1 , 0 2 ] - - 2 J V 3

[o2, 031 - -2j=!

[e2', 53] " -2je1

163' all - -2j&2

(&I' [ad , 92 ] "41 (63P 4]" 0 (67)
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For a discussion of the Pauli spin operators, the reader should

consult any text on quantum mechanics, such as Dicke and Wittke, Introduc-

tion to Quantun Mechanics (Addison-Wesley Publishing Company, Inc., 1960),
Chapter 12. The definitions of these matrices sometimes vary in the signs

that are used, so that the reader should take care to note the particular
definition being used. The reader should also note that the P4 defined

in Eq. (66) is not properly a spin matrix, but is the identity element.

Its inclusion, however, makes the set complete, allowing the representa-

tion of an arbitrary 2 X 2 matrix in the form

R a r 9 .1 + r,62 + r3e + r,64  (68)

where the coefficients can be determined by the orthogonality relations

trace (.iad) 28ij

so that

1
r = trace (0 ,R)

2

where the trace of a matrix is the sum of the diagonal elements. (This

procedure is based on the inner product relation defined in Appendix B,

Sec. 3).

It may also be observed that it is possible to define a similar

set of operators for any representation of the rotation group. That is,

we can define matrices al, u 2 , 93, such that the commutation relations

of Eq. (67) are obtained. These matrices then provide a basis in terms

of which we can expand any R that is embedded in this representation.

Hence the procedures used here are not limited to 2 x 2 matrices. The

development that follows is applicable to any system for which the develop-

ment of the preceeding section is applicable. The two analyses are

completely equivalent, although there may be considerable difference

of convenience.

We consider now, an R that is expressed in the form of Eq. (68).

Since the a are constant, the derivative of R is:

r3' + + re 3 + r (69)
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We seek an A of the form

A 0 al 1e + ae 2 + uaG3  + a 44 (70)

such that

H' - -j[A, R] - -j(asr 2 -a 2 r 1 )[e 1 , a ]

-j(a r, - a3 r )[e1 , II ]

-j(a 2 r - a 3 r2)[e 2 , ]31

a -2(alr 2 - a 2 rd)e

+ 2(ajr 3 - a 3 r,)e 2

- 2(a 2 rS - a 3 r 2 )0 1  (71)

Hence, we must have

r = 2(a 3 r2 - a 2 r 3 )

r 2(aIr 3 - a 3 r,)

r3  - 2(a 2 r, - a~rd) (72)

Furthermore, r., must vanish, so that r 4 can, at most, be constant.

For this to have a non-trivial solution for a1 , a 2 , a 3 , we must have

r~rI + r 2 r; + r 3 r; - 0 (73)

or

r + r+ 2 - A2  (74)

where A is a constant, not necessarily real.
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We try

a, . 2k(r 2 r; - r3 r;)

a2  a 2k(r 3 r; - rlr3 )

a3  a 2k(rlr; - r 2 r;) (75)

obtained from Eq. (72) by interchanging a, and r' and multiplying by

k. Substituting in Eq. (72) and using Eq. (63), we find that this is

a solution for A providing k - -1/(4A2 ). Hence the "general" solution is

A A1 (r 2 r; - rsr 2 ) + frl 01

+ { (rr; - rlr3 ) + fr2 }0 22A I

+ -- L (rlr; r 2 r ) +fr 3}a 3  (76)2A2 2f30

For A' to be expandable as in Eq. (7)--i.e., as a commutator-the

coefficients of A must satisfy an equation similar to Eq. (74). Using

Eqs. (73) and (74), we find that

(I(rr' - r 3 r') 2 + (r 3 r - r~r) + (rjr; - r 2 r;)

A2 (rl 2 + r + r 2 ) - (rlr, + r r; + rr) 2

A2 (r 2•+ r2 + r) (77)

Also

rl(rzr;- r 3 r;) + r 2 (rr - rlr;) + r 3 (rlr - r~r) a 0 . (78)



Hence the condition that A be expandable requires that

1 (r,"+r; +r ") + A f 2  . B2 (79)

4A2 
3

so that f is determined.

It should be noticed that we have used only the commutation relations

of Eq. (67). Hence, the results are not limited to the specific form of

Eq. (66). Further, it is not even limited to the dimensionality of

Eq. (66). Specifically, if we are given a set MI, M2, and M3 that obey

Eq. (47), then it will be seen that

a',= M1 - M2

02 = j(M1 + M2 )

os=2M3

a4 = I (80)

have the commutation rules of Eq. (67). Hence, any system that is

isomorphic to the rotation group can be handled in this formalism.

5. CONCLUSIONS

We have here developed the analytic technique for finding an A

that is expandable as Eq. (7), given an R that is expandable as Eq. (6).

We have done this for various types of systems which describe the effect

of coupling modes, or systems of modes, together by pairs.

The three cases considered are: (1) R a general 2 x 2 matrix,

(2) R expressible as a representation of the three-dimensional rotation

group, and (3) R expressed in terms of either the Pauli or the general-

ized spin matrices. Cases (2) and (3) are equivalent problems, being

merely different representations, and Case (1) is a subclass of the

others. They have been given in detail since one or another of the

solutions may be most convenient in different situations, and in the

hope that general insight will be gained by studying these cases in

detail.
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C. AN EXPLICIT SOLUTION FOR A FOR R OF SIMPLE STRUCTURE

In this section we shall seek a solution of Eq. (2) for A, given R

and R', that will involve only R and R'and the eigenvalues of R. That is,

we shall seek to avoid explicit use of the eigenvectors of R. The reasons

for seeking such a solution have been outlined in the introduction.

We shall limit ourselves here to R of simple structure. That is,

we shall assume H to have a complete set of eigenvectors, so that we

do not need to use generalized eigenvectors. This does not appear to

be a serious restriction since most practical systems do involve a

system matrix that is of simple structure except under certain limiting

conditions such as a band-pass filter on the edge of the passband,

or a TWT at the critical degree of asynchronism where amplification

is lost.

A more general expression which does not require R to be of simple

structure is developed in Appendix B, based on the abstract analysis

of Appendix A. Hence, even this restriction can be avoided.

We have the problem then of solving Eq. (2) for A. We note that

Eq. (2) is of the form

V - I[R, u] (81)

We can consider j[R, ] as an operator that maps U onto V. We wish

to find an operator that will map V onto U. That is, we wish to find

the inverse operator.

The operator j[R, ], however, is singular. It"annihilates" any

U that commutes with Rf-e.g., R itself. Therefore, it has no inverse.

It has no inverse since the range, S1, of V, is a proper subspace, 2 and

not the whole space, S, of n x n matrices.

What we need is not a true inverse, because V must be in SI, and

not S. What we need is an operator, whose domain 2 is Sl, and which

2 The set of elements of the whole space for which an operator is defined is called the "domain" of

the operator. The space spenned by the result of applying an operator to any element within ite
domain is the"renseg" of the operator.
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I4

acts as an inverse within this domain. What it does to a V outside

this domain is of no significance since V is necessarily within S1 .
3

The problem, then, is to determine a"restricted inverse" to

j[R, ], whose domain is the range of j[R, ]. This operator, then, will

not determine all U that give a possible V, but instead will give one

possible U. It is in this sense that it is an inverse operator.

We note that j[R, ] is a linear operator; that is, if kI and k2 are

any two scalars and U1 and U2 are any two matrices in the range of j[R, ],

j[R, (kIU 1 + k2 U2 )] - klj[R, UJ] + kpj[R, U2 ] (82)

Therefore, j[R, ] has a minimum polynomial. That is, if T is the

operator,

T - j[R,] (83)

there exist polynomials in T, O(T), such that

O(T)U = 0 (84)

for all U. The polynomial of lowest degree is, then, the "minimum

polynomial."

To interpret Eq. (84), we must understand what is meant by a

power of T. Clearly this involves the successive application of T,

leading to the k-commutators. That is, we define

[R, U] = flu-UR

2I 2 , U] = [R,[R, U]]

[hR, U] - [R[ H.IR U]] (85)

3
This statement of the problem, and some of the argument that follows, imply that it is possible to
consider the set of all anX n matrices as a linear vector space. This is a valid viewpoint, although
somewhat unusual. It depends upon the fact that the set of n X n matrices obey the postulates of an
abstract linear vector space, for which the reader should consult any text on abstract linear algebra,
such as Linear Algebra and MNtrts Theory. by R. P. Stoll, (McGraw-Hill Rook Co., New York, N.Y., 1952)
See. 2.2 et seq. In Appendix B, we shall exhibit an isomorphism between certain classes of R and
particular vector spaces that are expressed in the usual form as a column matrix.
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and interpret TV(U) as

Tk(U) * j[fB, U) (86)

In the sequence of k-commutators, it is customary to define

[ 0R, U] - U

so that T0 (U)would equal U.

However, Eq. (84) cannot then contain To since a U that is

annihilated by all Th with k ý 0-e.g., R-is not annihilated by To.

Hence 0(/i), the polynomial function of / from which O(T) is derived,

cannot contain any constant term.

We will suppose, however, that 0(ju) does contain a term in 1, and

will "normalize" the polynomial so that the coefficient of this term is

minus unity. The significance of this assumption will be investigated

later. For the moment we will simply assert that it appears to be

equivalent to the assertion that R is of simple structure.

We will also assert that 0(y) contains only odd powers of g. This

we will later show to be true.

It follows, then, that 4 can be written as

SO(A) -{PR(•) - lu (87)

or that

S &(T)T2 X -I (88)

for any matrix X.

If this is true, then

Uo - O(T)V (89)

is a solution of Eq. (81), where we now write Eq. (81) in the form,

V - 1I.,J (90)
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We can verify this by substituting Eq. (89) in Eq. (90) and using

Eq. (88). Since V is not annihilated by T, for R of simple structure,

we can, for this operand, cancel a T out of Eq. (88), so that Eq. (88)

reduces to

b(T)TV - V • (91)

Equation (89) then gives us the particular U, Vo, for a given V,

that is within the range of T. However, any U whose projection on the
range is U0 , is also a solution. We may write, as the general solution,

U - Uo + e(z, 1) (92)

where e(z, x) is any suitable function of x and z. [it is suitable,

again, if, for any value of z, e(z, x) is analytic in x in a simply
connected region that includes all the eigenvalues of R.) Since the

added factor is annihilated by T, the solution remains valid.

[The particular form of Eq. (92) may not be the most general possible
solution if R is degenerate. It appears to be sufficiently general for

our purposes, however.]

1. Tmi DETERMINATION OF

We must now investigate the significance of the polynomial 6(/1).

We will suppose, throughout this section that R is of simple

structure. We do not require that it be non-degenerate, so that some

of its eigenvalues may be multiple, but we do require that there be a
complete set of linearly independent eigenvectors. Suppose these are

the set z, such that

Rzi ,X . (93)

The operation of any matrix U on xz yields a vector that can, in

turn, be expanded in terms of the set

Uzi Y uijxi . (94)

J '
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If we consider the operation of the commutator on zip we find

[I. Ulzx - (NU - UR)xt

a Y.uijxj ) •iU i

J )j i i) J

J x

We may guess that the effect of the p-commutator on x is:

B[R, U~x, - Y(x. - x)Pu x (95)j

This we can prove by induction. It is true for p = 1. Assume it is
true for p. Then we find that

[ B+lR, U)x1  - R[ R, Ulzi - [IR, U]Rxz

-- Rv(,j - Xd )u x - x.i:(. - .)pu .ixj

Hence Eq. (95) is proven. Therefore, we find that, for a polynomial,
cp(FL) in /a:

= a0 + a1 /4 + a 2/A2 + .. a k (96)

j 5(T)ltx, Y jPa P[ PR, V~iz

= X{Yjpa(X p X.P'k x (97)

If, now, we set

'U " h (a - -\ ) (98)
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then

O 4(T)Ux , 74j•(h)uihX• (99)

This will vanish for all xiproviding qb(A) is a polynomial whose
roots are the set Ajh" It will, furthermore, be the minimum polynomial

if its roots are simple, so that it has the form

o(A) - f(k - A i) (100)

where i, j take only such values that the set A,, is distinct.

We note that A*i - 0 so that the polynomial so determined has no
constant term, as required. We also note that uji - -)ut, so that for

each non-zero root there is another that is its negative. Hence, the
non-zero terms generate a polynomial in even powers of A. Multiplying

by A for the factor corresponding to the zero root, we find that O(A)
contains only odd powers of u, as required.

The coefficient of the first power of / is the product of all the
non-zero A,,- Hence, the minimum polynomial normalized according to
Eq. (87) is

S-r-

( _____i_ _(101)r'it

where i, j take values such that each possible u,, occurs just once,
and where the prime on the product symbol in the denominator indicates

that the factor .it - 0 is omitted from the product.

We note that we cannot have all eigenvalues of R the same. Since
It is assumed to be of simple structure, it would then be a scalar func-

tion times the identity. But the constancy of the eigenvalues would
require that the scalar function be constant. Hence, the whole problem
becomes trivial. Excluding this trivial case, there must exist a set

of non-zero A,,.

We conclude, then, that a O(A) of the form specified in Eq. (101)
must exist for any R of simple structure.
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As a note of parenthetical interest, we can observe that O(A) is
the minimum polynomial of the matrix

(i X R - jR x I) (102)

where the symbol x indicates the"Kronecker" or "direct" product.4

D. THE CANONICAL TRANSFORMATIONS OF A CHAIN OF EQUATIONS

In this section we will consider the solution of the chain of
equations:

dA -A - A0
dz 0

-z j[B, A) B(O) - B0

dC
-z j C, B) C(0) " CO (103)

etc.

The class of non-uniform systems described by such a chain is that
considered in Sec. I, and in Interim Report 2, Sec. I1-A, and Interim
Report 3, Sec. I1. This class is of great interest since it is a class
that exhibits some of the potentialities of non-uniformity, but is at
the same time analyzable. It includes, for example, the important class

of parametrically coupled systems.

We will consider here the solution of such a chain. Specific
solutions for the simpler cases have been given in Interim Report 3,
Sec. II-D. We shall generalize the procedure used there and obtain a
process that can be repeatedly applied to the chain to effect a re-

duction of its complexity.

It should be noted that, in Eq. (103), we have reversed the order
of the chain from our usual designation. The matrix A is the one that

4
3e;, for example R. Bellmen, Introduction to Matrix Analysis, (McGraw-Hill Book Co., Inc. New York,
N.Y., 1960) Chapter 12, or other standard text.
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is constant. (We are not concerned here with chains that do not

terminate.) The matrix B is the one which can be regarded as represent-

ing a simple rotation around a constant axis. The matrix C then

represents a rotation around an axis that is itself rotating about a

constant axis. And so on. (This geometric interpretation is valid,

but it should be remembered that the vector space involved may have

many dimensions and a not-positive-definite metric. In relativistic

terms, some of the dimensions may be"time-like." Hence, the geometry

of the space may be quite different from Euclidean space.) The system

operator, in our usual sense of this term, is then the highest member

of the chain in which we are interested.

This change of order is convenient for our purposes because our

procedure will involve the successive isolation and elimination of the

complexities introduced by the lower members of the chain. We shall,

in the first step, change the basis to a rotating one, such that B

becomes constant and C becomes a description of a simple rotation about

a fixed axis. Then we shall make a second change of basis such that

C becomes constant. And so on, up the chain. We shall finally obtain

a set of equations for the changes of basis that will effect these

simplifications. While these equations, for the higher terms, are not

simple, they are in principle soluble. Thus, we shall establish a

canonical procedure for the analysis of such a chain.

The only restriction that we shall impose, other than the implied

one that the system matrix is expandable as a chain of finite length, is

that system everywhere exhibits a known conservation law. As discussed,

for example, in Technical Note 1, Appendix A, and Interim Report 3,

Sec. 11-B, this requires that the system matrix, H, be K-hermitian

(O - BIt). And, as shown in Interim Report 3, Sec. II-C, Theorem 3,

we can then choose all the members of the chain so that they are every-

where K-hermitian. We are then justified in assuming that all the

matrices of Eq. (103) are everywhere K-hermitian.

1. FiRsT STEP

We have specified the chain so that A is a constant matrix, A0.

We can use this fact to obtain a z-dependent change of basis that will

make B a constant.
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We consider the change of basis induced by a transformation U1

that is K-unitary:

Utg K . (104)

Evidently U1 is non-singular, since K is, and so may be used as the
transformation matrix of a change of basis:

IA M Uj'AUI

AI I IU~1AI

etc. (105)

If, now, we define

dU1

M - jU;- " -z (106)

then M1 is K-hermitian, since

K 1  fNK -jK ' K't, dz 1

dz

dU1

. +jU1 -- 1U 1

= 
(107)

Furthermore, BI, C1 , etc., are K-hermitian, since B is K-hermitian, and

K•'BtI - K" UtBtU.-IK

SU*I'KU'BtI UJB1 J B (108)
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Now differentiating the expression for B1 in Eq. (105), we find

d31  AU f !11  dD
- -W -UI U;_ + B-_ + U - -U

ds " dz U 1 1 dx 1d

* jM1 B1 - jBIM1 + j [ 1 . Al]

M j[B1 ,(A, - MI)] . (109)

Similarly, we have that

dC1" , j[C1 , (B1 - H1)]
dz

dDi
d-" j[D1, (Cl - MN)]

etc. (110)

That is, if the original sequence was K-hermitian, and if we choose

U1 to be K-unitary, then the new sequence, A1 , BD, Cl, etc., are still

K-hermitian.

We were given that A was constant. If, then, we set

Mt A1  - AoU!(0) I (111)

then Eq. (109) reduces to dB!/dz 0, and B1 is constant. To accomplish

this, we require that

dUzjuld-- U;!AUl U-!AoU! (112)

or

-~ * -AOU 1  (113)
dU

U1  - exp (-jA0 z) . (114)
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Furthermore, this U1 is indeed K-unitary since A. is K-hermitian.
It is also non-singular for any A*.

We have, then, replaced the original K-hermitian sequence by a

new K-hermitian sequence in which B1 is now constant. Furtheremore,

since the transformation is the identity one at z 0 0, we must have

8 o (UB)

We can now continue the process.

2. SECOND STEP

We consider, as before a K-unitary transformation matrix V2 and

define the K-hermitian matrix N2 as

N dV 
(

SN2 a JV1 d . (116)

We now let

BI, - V;'B1 V2

C_1 V 17

C 2 V 2 (117)

etc.

and

S 2 1V 2 (118)

Then

X2 dV d2 dC1
---- --- -V-1 -'V*'CV + V*C -. --

d2 dZ 2 12 2 V dz 2 dzd2 d-Vz dz- Vl•V

- jNC2 - jC2N2 + jV;'[Cl, (B1 - MIVI

"- j[C2 ,(B, - M2 - N2 )] (119)
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dD2
ds j(D21 (C2 -M - N2 )] etc. (120)

We chooae V, so that

2 2 2
V2(°) = I (121)

- B2 - A2

or

dV
2

dv- -"0" -/(Bj - Mj)Ve - -/(Bo - Aoo(]2

V2 - exp {-j(Bo - AoWz (123)

This choice makes C2 a constant. At z - 0, both V2 and UJ are

the identity, so the constant must be CO

C2 Co (124)

3. TmIRD STEP

Continuing, we set

dW3
3P3  - JW3 (125)

dz

C W-1 C W3 (126)

and D3 will be a constant providing we set

P3  C3 - M3  -N 3  (127)
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or

d13

. -j(C 2 - B2)W3

-j(Co - V;YBoV2)W3 (128)

4. Tus TRANSFORMATION EQUATIONS

The key equations can, then, be summarized as follows:

d * -jA°Ul U1(o) * I (129)

dVz

dV 2() I (130)

dz 0 1 01 23

dz -j - 202W W3(0) - I (131)

dX4
dz -{D 0 - W;'C 0W3}X4  X4(0) - I (132)

etc.

It happens that, because of the simplicity of the first equation,

U, commutes with A0 and the second equation is simple. This is not true

in the succeeding equations, however. Their complexity grows very

rapidly.

If we write the general equation of this sequence of Eqs. (129),

(130), (131), (132), etc. as

dR
dz -{Fo - 8'G*S}R (133)
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we can make the substitution

K - 0 3 (134)

since F0 is constant, and obtain

jS*'GOS* (135)

where

S - Se- '°O' (136)

Hence, the entire system can be reduced to the form of Eq. (135).

It is these equations for the appropriate basis-transformations that we

consider the canonical equations for the original chain. The solution

of the original chain has been made to depend on the solution to the

canonical chain of equations of the form of Eq. (335).



III PRUO"G M MO 1i MNEXT IUnTmva

During the next interval work will continue on the problems studied

here. It is thought that we are now in a position to begin the inter-

pretation of some of these results in terms of physical processes that

are of interest for devices.

One tool for this process is the"Baker-Hausdorff Formula." This

is a formula giving the solution of

exp C I (exp A)(exp B)

for C when A and B are non-commuting operators. Since the class of

non-uniform systems that we have been considering are solved as the
product of exponentials, the determination of the behavior of the system

as a whole can be investigated conveniently with this formula.

We intend, also, to begin consideration of ways of developing a

statistical theory of mode coupling. This is a new topic, but one that

is important for many practical problems.

Finally, surveillance of the literOLure will be continued. No
report on this aspect has been included in the present report, but will

be continued in the next Interim Heport.
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APPENDIX A

TIH "INVERSION" OF SINGULAR OPERATORS

In this appendix we shall be concerned with the solution for v of

the equation

a - Tv (A-i)

when u is known. T is assumed to be a linear operator which may be

singular.

A singular operator, of course, has no inverse. This is what we

mean by calling it singular. Nevertheless, Eq. (A-l) is soluble in the

sense that, for a given u, v is determined within certain limits,

The singularity of T enters through the statement that not all a

will generate an appropriate v. However, this does not contradict the

problem since the statement of the problem implies that u is in the range

of T. That is, if we can write Eq. (A-1) at all, then u must be in the
subspace such that some v exists. The problem, therefore, is to find an

operator that acts as an inverse for T when operating on the range of T-
i.e.,on the subspace that is obtained by operating on all vectors with T.

We do not care what this operator may do on any other vector.

The problem may arise in a number of different contexts. In vector
analysis, we may meet the problem of finding i, given ý, when

Z. X V (A-2)

The operator (ý x) is tasily seen to be a linear operator. It is a

singular one since the cross product vanishes if - is a scalar times a.
And yet it may be important to be able to solve such an equation for v.

Another problem that is of considerable interest is to find the

matrix V, given U, when

V - j [R,U) - j(RU - UI) (A-3)
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i.e., when V is the commutator of R and U. The space of n x n matrices

can be considered a linear vector apace. This may seen somewhat strange,

but it can be easily seen that this space does obey the postulates of a

linear vector apace. The operator

T a jIR, ] (A-4)

is a linear operator. It is, however, a singular one since V vanishes

for any U that commutes with R, such as R itself.

This form arises in various quantum mechanical problems. It also
occurs in coupled mode theory. The class of systems with system matrix,

R, for which a matrix A exists such that

dR
- jfK, A) (A-5)

is a class of "non-uniform" systems which are cunsiderably simpler than

the general non-uniform system. If A can be chosen to be constant, it
is then possible to solve the system exactly and explicitly. This class,

in fact, includes most of the solved non-uniform systems, such as the

exponentially tapered transmission line and the distributed parametric

amplifier. This is, then, a class of systems that justifies intensive
study.

In the study of Eq. (A-5), our immediate concern is to determine if

the system operator R(z) is governed by an equation of the form of
Eq. (A-S). It can be shown that the necessary and sufficient condition

for this is that the eigenvalues and structure of R be constant.

Having determined that this is ttue, our next concern is to determine

what A may be, knowin'; RN) and hence dR/dz. This, then, is the problem

of "inverting" the singular operator j[R, I.

We note that we do not expect a unique solution to Eq. (A-5).. Given
an A that satisfies Eq. (A-5), we can, evidently, add to A any matrix

function of z that everywhere commutes with R(z) without affecting
Eq. (A-5). There is, then, a"pencil" of solutions.

In more abstract terms, given Eq. (A-1) with T a linear operator. If

v isanysolution toEq. (A-l) foragiven a, and if vw is any vector such that
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TVo 0 0 (A-6)

then (v + av.) is a solution, a being any scalar.

Hence, if Tie singular, the solution to Eq. (A-i) is not unique.

To discuss this problem we shall first discuss these complications

in a precise way.

1. ABSTRACT FORMULATION

We will start by defining certain important concepts.

Definition: The "domain," SO, of an operator, T, is the subspace

of vectors such that the operation of T is defined.

Normally, we consider the domain of a matrix operator to be the
whole space. We do this because there is really no reason to do other-
wise. (This is not true in infinitely dimensional spaces with either

infinite matrices or integral or differential operators. In such spaces,
it may not be possible to apply a given operator to any operand without
introducing divergencies. It is then necessary to restrict the domain to
assure convergence. In finitely dimensional spaces, such as is our con-
cern, this problem does not arise so that we usually have no reason to
specify the domain as other than the whole space.) However, in the
present situation, we are seeking an operator whose operand is known to

be confined to a given subspace. This operator will have significant

meaning only for the domain that is spanned by the possible vectors u.

Definition: The "range," S., of an operator, T, is the subspace

spanned by the vectors obtained by T operating on any vector in its
domain. We can express this formally by writing

SR - TSD

or by saying that the range of T is T operating on its domain.

The singularity of T is expressed by saying that its range is a
proper subspace--i.e., is not the whole space.

Definition: The "null space," SN, of an operator, T, is the subspace
of its domain such that T operating on any vector in SN vanishes:

Tz - 0 if x is in S .



The singularity of T can also be expressed by stating that the null
space of T is a proper subspace-i.e., not the space containing only the

null vector.

Dtfinition: A set of linearly independent vectors x1, ... , I are

called "progenitors of the range of T" if the set Til, T12, ... Tzh form

a basis for the range of T.

Note that the specification that Tx!, ... Ti, form a basis implies

that (1) they are linearly independent, and (2) none is the null vector.
Hence a set of progenitors must contain exactly k vectors, if k is the
dimensionality of the range.

Further, the vectors x, ... x, must be linearly independent. For,

if there existed a non trivial set of scalars C, such that

ZCz a 0 (A-7)

then, since T is linear, we would have that

TrCix, -MZC(Tr,) - 0 (A-8)

and the set Tzi would not be linearly independent.

Hence, any set of progenitors spans a subspace which we will call a
"progenitor space." This space is not uniquely defined, if T is singular.

It has, however, the virtue that the operation of T on any progenitor
space is non-singular. That is, to every vector in any given progenitor

space there corresponds one and only one vector in the range of T, and
vice versa.

In solving Eq. (A-I), then, we know that u is in the range of T. We
wish to specify, for each u, a unique v that is a particular solution to

Eq. (A-1). That is, we wish to specify a particular progenitor space.
The mapping of the progenitor space onto the range is, then one-to-one.
If, in addition, the progenitor space can be taken as identical to the

range, then this mapping can be expressed as a non-singular operator with
this subspace as its domain. The problem is then directly soluble, giving
a particular solution to Eq. (A-l). The general solution is then obtained
by adding to the particular solution any vector in the null space of T.
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This is not, however, always possible to do. If T has a chain of

of eigenvectors and generalized eigenvectors with zero eigenvalue, then

the eigenvector that heads the chain is both in the null space of T and

in the range. It is in the null space since it is annihilated by T-. It

is in the range since it is generated by the generalized eigenvector of

rank two. Since it is in the null space, it is not by itself a pro-

genitor. Therefore, the progenitor space cannot be identical with the

range. While the mapping of a progenitor space onto the range is still

one-to-one, it is not a mapping of a subspace onto itself. In this case,

we will have to use a more involved procedure.

Before going into the general procedure, however, we will consider

a simpler case in which this problem does not arise.

2. T OF SIMPLE STRUCTURE

We will consider first the case when T is of simple structure. This

is not the most general situation that avoids the difficulty cited in the

previous section. We could admit non-simple structure involving chains
with non-zero eigenvalues. However, it does appear to include most situ-

ations of interest. The remaining situations in general seem always to

include at least the threat that a zero-eigenvalued chain may exist, so
that it is then better to use the more general procedure that we will

discuss shortly.

We have, then, the following theorem

Theorem 1: If T is of simple structure, the set of eigenvectors with

non-zero eigenvalues are both a basis for the range and a set of pro-

genitors-i.e., a basis for a progenitor space.

This follows directly by taking as a basis for the whole space the

whole set of eigenvectors, which is complete since T is of simple

structure.

This theorem can also be stated as:

Corollary: If T is of simple structure, the range of T is a pro-

genitor space of T.

Thus this tells us that, in Eq. (A-1), we can restrict v to be

within the range of T without, by so doing, restricting the range of u.
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We can, in other words, be certain that, for any a that can occur in

Eq. (A-l)--i.e., is in the range of T-there exists an x such that

u - Tx (A-9)

Then, the particular v, v, that is within this progenitor space is

given by

VI - Tz (A-l0)

The minimum polynomial of T--i.e., the polynomial function that

annihilates any vector in the whole space--can be written as

CT() - rT(T - kil) (A-11)

where the product is taken over all distinct values of X.. That is, if

X. is a multiple root, the factor (T - XII) appears only once. That

this is the minimum polynomial follows from the fact that T is of simple

structure.

Since T is assumed singular, zero is an eigenvalue. JIence 'I con-

tains as a single factor, T itself, and can be written as

T aT + 4 2T
2 + . (A-12)

where

aI = l'(-X) (A-13)

the prime indicating that the product is over all distinct, non-zero

values of X.. Hfence, a1 is not zero, and b(T) can be written as

O(T) - (a, + (a2 + a3T + ... )T)T

. al{1 - O(TIT (A-14)

where

1
O,(T) 2 -a-(a2 + asT + .. ) (A-15)
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The function O(T) is a function that annihilates any vector, x.

Hence, for any x, we have that 0

Tx - O(T)T2X (A-16)

If, now, we premultiply Eq. (A-9) by M(T), we find

O(T)u - O(T)T2x - Tx - v (A-17)

so that the particular solution is

V, - ((A-1)

and the general solution is

v - O(T)u + vO (A-19)

where v0 is any vector in the null space to T-i.e., such that

Tv 0  a 0 (A-20)

We have, then, obtained a general solution of Eq. (A-I) if T is of

simple structure.

This may seem like a devious way of going about it. In particular,

we have spent a considerable amount of time justifying the substitution

of TZ for v, which was then immediately removed from Eq. (A-I?).

This was, however, necessary. It was necessary because the minimum

polynomial of a singular operator contains no constant term. Therefore,

we cannot find a function 4i(T) such that, in general,

x * Vi(T)Tx (A-21)

The beat we can do is Eq. (A-16), in which the right side contains the

factor T 2 . The manipulation through the vector x defined such that

Tx - vY, is necessary to take account of this factor.

If T is non-singular, we can be certain that the minimum polynomial

does contain a non-zero constant term, and a O(T) does exist such that
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Eq. (A-21) is true. In this case, the solution to Eq. (A-i) is obtained

by premultiplying Eq. (A-i) by this qi(T). This is a valid, if somewhat

unorthodox way of obtaining T-1 for a non-singular operator in terms of

the positive powers of T.

If, now, T is not only singular but has a chain of length k with

zero eigenvalue, then the minimum polynomial contains the factor Tk.

Hence, instead of Eq. (A-16), we obtain

Tzx - O(T)T'*ix (A-22)

which does not permit us to use the same procedure. We could use it if

we could make the substitution

v - Tkx (A-23)

This, however, excludes the possibility that v, and hence u, are in the

entire subspace spanned by the chain of generalized eigenvectors with

zero eigenvalue. This subspace does include vectors that are in the

range of T, as discussed before. Therefore, the v so found is not a

solution for any u, but for a specifically restricted u. It is for this

reason that we must seek a more general approach to this problem.

3. GENERAL T

l'e can handle a general operator, T, including those with chains of

generalized eigenvectors with zero eigenvalue, by consideration of the

adjoint operator.

Before doing so, we define the orthogonal complement of a subspace.

Definition: Given a (proper) inner product relation, the "orthogonal

complement" of a subspace, Sp, is the aubspace of all vectors that are

orthogonal to every vector in S,. That is, x is in the orthogonal com-

plement of S, if

<x, y> - 0

for every y in Si.
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The definition implies that the orthogonal complement of a subspace

is a subspace. It is not difficult to see that this is so (providing the

whole space has a finite number of dimensions).

We shall, then, make use of the following theorem.

Theorem 2: Given a (proper) inner product relation, the range of T is

the orthogonal complement of the null space of T, where TV is the oper-

ator that is adjoint to T under the given inner product relation.

This theorem, then, gives us a connection between the range of T and

a subapace of the whole space that is the complete domain of T. We shall

see later how to use this connection.

Before proving the theorem we need to prove the "projection theorem:"

Theorem 3: Given a subspace, Sp, a vector x not in Sp, and a (proper)

inner product relation, then there exists a unique vector, w, in Sp

called the "projection of x on S1 , such that

<X - w, y> * 0 (A-24)

for any y in SV.

Consider any y in SI. Then, since x is not in SI, (x - y) is not

the null vector. Hence

<x - y, x - y> # 0 (A-25)

This inner product, considered as a function of y, must have a

greatest lower bound. That is, there must exist some y. such that

<1 - Y0, x - Y0 > a a (A-26)

where a is a positive real number, and such that for any y

< - y, x - y> > <x - y 0 , z - ya > a a (A-27)

We do not, at this point, assert that yo is unique, but only that at

least one such y. exists.
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We shall show, now, that yo is the projection.

Any vector y in S1 can be expressed as a linear combination of ye

and some other vector Z:

Y a YO + as (A-28)

where a is a scaler. Then

<- y, - y> a <X - YO - as, x - Y0 - as>

U <x- Y0 , x- Yo>-a <Z, x- yo>-a<x- Y0 , z>

+ 1a1 2 <z, z> > <x - yO, x - yO> (A-29)

This must be true for any non-null z and any a. In particular, it

must be true for

<Z, x - yo> <X - yo, Z>*
a Z (A-30)<5* 3-> <3, 3>

Substituting this in, we find that

ki- Yo, s>I2
- > 0 (A-31)

<Z, •>

Tht left side is negative semi-definite. It cannot be greater than

zero, so it must equal zero. Since z is non-null and the inner product

relation is proper- i.e., positive definite-we must have

<x - Y0 , z> - 0 (A-32)

Since this is true for any z in Sp, the yo determined as a vector

giving the greatest lower bound in Eq. (A-26), is a projection as defined

by the theorem.

Suppose, now, y0 were not uniquely defined. Suppose there existed a

y, also giving the greatest lower bound in Eq. (A-26). Then it, too,

would obey Eq. (A-32):
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<I'Y1, z> * 0 (A-33)

for any 3 in S1.

Subtracting Eq. (A-32) from Eq. (A-33), we obtain

<YO -Yl u> a 0 (A-34)

But yo and y, are both in S1. Therefore, so is their difference.

Since X is any vector in Sp, we can take it, in particular, as yo - yl:

<Y - Y1 , Y - Y1 > M 0 (A-35)

Hence y. - y, is the null vector, and y, is identical to y0 "

Therefore, a projection exists and is unique.

It may be noted that the theorem concerns a vector not in S1.

This restriction can be immediately removed, however. If x is in Sp,

then we define it as its own projection, and the result becomes trivial.

We use this theorem, now, to prove the following:

Theorea 4: Given a (proper) inner product relation, the equation

a - Tv (A-36)

has a solution for a given u if and only if a is orthogonal to every
w that is a solution of

Tfw - 0 (A-37)

To prove the necessity of the condition, consider any vector z and

any v that is a solution of T1w - 0:

0 a <T~w, z> * <w, Ti> (A-38)

This is true for any x, and, in particular, for x - v:

<w, TV> a <v, u> a 0 . (A-39)
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Therefore, n is orthogonal to any W that is a solution of the homogeneous

adjoint equation.

To prove the sufficiency of the condition, suppose that a is orthogonal

to all solutions, w, of the homogeneous adjoint equation. We ask, then, if it

then follows that u is in the range of T.

Now the range of T is a subspace since, if

1I0 a TvI

u2 = Tv2 (A-40)

then, since T is linear,

am + N 2 = T(av, + Pwv2 ) (A-41)

That is, if ua and m, are in the range of T, then so is any linear combi-

nation of U, and u2. Hence, the range is a subspace.

Therefore, the projection theorem applies. That is, if x is any

vector, then there exists a nu in the range of T such that

<ua - o, Ti> 0 0

U <T"(u - u0), x> (A-42)

This is true for all iL, and in particular for x : TO(u - a.). Hence,

this vector must be the null vector.

TO(u - u.) a 0 (A-43)

Hence (u - u0) is a solution of the homogeneous adjoint equation.

By assumption, then, (u - no) is orthogonal to u, so that

<u -- i0 U> - 0

a <u -Uo, u -u0>+<u*-0, 80> (A-44)
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However, ua is in the range of T, being the projection of 0 on the
range. Also, (v - uo) is, by the definition of a projection, orthogonal

to all vectors in the range of T. Hence, the second term above vanishes,
leaving only

< -u, t - uo> - 0 (A-45)

so that

a a no (A-46)

Therefore u is, in fact, in the range of T.

We have proven, then, both the sufficiency and the necessity of the

condition.

The theorem that we originally wanted to prove, Theorem 2, is now

simply a restatement of Theorem 4, for the space spanned by w is the null

space of To and the condition that u is orthogonal to all w defines the

orthogonal complement. Hence, the range of T is the orthogonal complement

of the null space of To.

We emphasize that our entire development does depend on the positive

definiteness of the inner product-i.e., that it be "proper." With this

limitation, however, it does not depend on the particular inner product

being used. As the inner product is changed, the adjoint operator changes

but so does the definition of orthogonality, and hence of the orthogonal

complement. The two changes complement each other in such a way that the

range of T as the orthogonal complement of the null space of the adjoint

of T is unaffected.

This, then, gives us the means of solving Eq. (A-1) in the general
case.

W'e have that u, which is known to be in the range of T, is in the

orthogonal complement of the null space of To. Hence, we can premultiply

by Eq. (A-l) by To and find

w - Tou x TOTv (A-47)

and know that w is not the null-vector if u in not.
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Now the operator TIT is self-adjoint under an inner product relation

that is assumed to be proper:

('T)O TIT (A-48)

Therefore, it is of simple structure, and the results of the preceding

section apply. That is, a particular solution to Eq. (A-47) is obtained

by considering W(TT), the minimum polynomial of TOT, and forming /(TT)

from it. This we can do since, firstly, TOT is singular if T is, so that
O(TST) has no constant term, and secondly, TOT being of simple structure,

the coefficient of the term in the first power of TIT is not zero. Then

we have that

V, - O(T'T)

a 4j(rT)T'u (A-49)

and the general solution is

v - /i(TT)Tlu + w0 (A-50)

where v is any vector such that

Tv 0 a 0 (A-51)

This, then, gives us a general solution to our problem.

4. COMPARISON OF SOLUTIONS

The particular solution obtained in Eq. (A-49) is more involved than
that of Eq. (A-18). Equation (A-49) is, of course, more general, in that
it admits a T of any structure. But suppose T is of simple structure.
We may ask if there are, in this case, problems in which it might still

be worthwhile to use the formally more complicated solution of Eq. (A-49).

The two particular solutions are not, in general, the same. By

Eq. (A-18), we find the particular solution that is in the range of T.
In Eq. (A-49) we find the particular solution that is in the range of To,
and which therefore is in the orthogonal complement of the null space of

T. These two solutions will be the same only if the operator is normal
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with respect to the inner product relation being used. If the operator

is not normal, the two solutions will differ by a vector that is in the

null space of T.

The formally more complex solution of Eq. (A-49) depends upon the

particular choice of the inner product relation. We can suggest then

that it may be useful, even when Eq. (A-18) is usable, precisely because

it permits us to choose the inner product relation that is most appro-

priate for the particular problem. It has, in other words, a built-in

flexibility that may be of value.
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APPENDIX P

PRMWIES OFTHE COMMUTATOR OPERATOR
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APPENDIX B

PrW91T OF TIE COMUTATtm OPERATOR

In this appendix we shall discuss some of the properties of the

commutator operator. That is, we shall consider the equation

U TW . -T1V . [V,Wl

a (VW -W) (B-i)

so that

T, [ I, ]

T [W, ] (B-2)

(Note that, for convenience, we are here dropping the scalar factor

j that we usually include. It may be considered as being included in

one of the matrices.)

Such equations arise in a number of different contexts in coupled

mode theory, mechanics, quantum mechanics, and other fields.

In coupled mode theory, it arises naturally in the study of the
noise power representations. If, for example, we have the equation

dz (B-3)

where R is known to be K-hermitian for some constant, non-singular,

hermitian K, and z is a vector represented as a column matrix, we can,

if we like, study the behavior of the dyad

* - tKOK (13-4)
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Then we see that

dz dz iKtl

* -jIbf ttK + jxztRtK

* -jRzxtK + /xztB

--ON + j W

* -j[R,W1 - -j.T W (B-5)

For the study of noise behavior in a system, W is a more convenient

variable since its terms are spectral power densities, and thus are

meaningful even when the components of x are "pathological" functions of

time.

In addition, we have also observed that the general case, where R

in Eq. (1-3) may be any matrix function of z, is extremely complicated.

However, the class where R(z) is not unlimited but constrained to be such

that its derivative is expressible as a commutator with some matrix U,

d - j[R,U] - jTl'U (B-6)
dz

is an important class of systems, with some useful simplicities. It in-

cludes such non-uniform systems as the exponentially tapered transmission

line, the distributed parametric amplifier, and the like.

A third aspect of the use of commutator operators is in the expansion

of certain forms. In particular, we shall see that the form

eABe-A

is conveniently expandable in terms of commutators.

Our purpose here, then, is to establish the fundamental properties

of these operators so as to provide the basis for their employment in

various problems of analysis.
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1. THE LINEAR VECTOR SPACE

We consider Eq. (B-1):

U TW - [V,W] (B-7)

where we regard T, as the operator in question.

The operator T, operates on any n x n matrix, W, to generate an
n x n matrix U.

We assert that the space of all n x n matrices is a linear vector

space in which T. is a linear homogeneous operator.

It may appear strange to call a square matrix a vector. However

the properties that the elements of a set must have for the set to be a

linear vector space do not depend on the form of the representation. We

have merely adopted as a convention that is usually convenient the form

of a column matrix. This is usually convenient, but not always, and is

not necessary.

For a set to be a linear vector space, we require (1) that the

operations of addition of two members and of multiplication by a scalar

be defined, with the usual properties of addition and scalar multiplica-
tion, (2) that the sum of any two members of the set be in the set, and
(3) that the product of any scalar times a member of the set is in the set.

The set of all n x n matrices with elements in a given field have
these properties under the usual matrix addition, and scalar multiplication,

and therefore form a linear vector space.

We could, if we liked, represent such a matrix in the standard form.

We could, for example, form a column vector of dimensionality n2 in which

the components of the matrix were listed in some prescribed order. This
is rarely worth doing, but does illustrate the possibility.

Of greater interest is the possibility of expanding an arbitrary

member of the set in terms of some convenient complete set of standard

matrices. For example, if n - 2, so that we are considering the space of
2 x 2 matrices, we can use the identity and the Pauli spin matrices used

in Sec. II-B-4:
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0i

(0 -(1 ) (B- 8)

Then any matrix, A, can be expressed as

A 0 a10| + a 2u*2 + a3V.3 + X40.4 (B-9)

and we can represent A as col(ap, a2, at, a4)'

More generally, it is sometimes convenient to use the set of K-dyads

formed from some complete set of K-orthogonal maximally normalized vectors.

These various-representations are possible and are sometimes con-

venient. However, it is not necessary to change to such a representation.

For the immediate purpose, they merely serve to illustrate the fact that

the set of all n x n matrices is a linear vector space-a fact which then

is independent of the particular representation being used. We shall, in

this section, use the representation as square matrices.

2. LINEARITY AND HOMOGENEITY OF THE COMMUTATOR

We have asserted that the operator, T., is linear and homogeneous.

It is linear because

T.(aX + 1jY) - V(aX + /*Y) - (aX + ?y)V

a(VX - XV) + ?(VY - W)

aT X + ?TY (B-10)

It is homogeneous since, if X is the null matrix, then TX is the

null matrix.

It may be noted that this implies that, if X be represented in some

manner as a column vector, as discussed in the last section, then the

appropriate representntion of T. is a matrix.

If, for example, we are considering 2 x 2 matrices and use the representa-

tionofEq. (B-9) in terms of the Pauli matrices, then it is easy to see that
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X (A D) (B

A +(B-n)

If

IVs ~ (B- 12)

then we can find that, in this representation

/ 0 i(-S) -(4 -y) 0
TX s-j(a - 8) 0 i(U + Y) 0

C x . ,y) -(0 + ) 0 0y

0 0 0 0 (B-13)

Again, we cite this only as an example.

We may note that the matrix of Eq. (B-13) is of rank 2. It has the

zero eigenvectors

01-1 - - )

1 0 (B-14)

This we would expect since, in the original representation of T as the

commutator, X a I and X a V both commute with V, so that they are annihi-

lated by the commutation operator.

We observe, in fact, that the commutator operator is necessarily

singular. The subspace spanned by I, V, V2, ... is always annihilated by
T.. More generally the null space of TF is the space of matrices that

commute with V, and this is always a proper subspace.

As a final remark, we will add that the cross product of the vectors

in vector analysis can be set up as a commutator relation That is, if

we have

* X (B-15)
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it is possible to choose a representation of the vectors as matrices so

that Eq. (B-15) takes the form of Eq. (B-7). One way, for example, is

by using the isomorphism of Eq. (B-11) in reverse, after reducing the

dimensionality to 3 by specifying, for example, that a4 a 0, or A a -D.

Thus, Eq. (B-7) can be considered as a generalization of Eq. (B-1S). The

singularity of T, is, then, a reflection of the fact that the cross

product of Eq. (B-15) is singular, and vanishes if - •g.

3. INNER PRODUCT RELATION

We now wish to obtain an inner product relation what will metricize

our space of n x n matrices. For this purpose, we need a procedure

whereby we can obtain from two elements, U and V of the space, a scalar

valued function that is linear in U and V. Specifically, we need a

scalar valued function which we will write as<U,V>, such that

<U,aV> a<Uv> (B-16)

<V U> - <UV> (*-17)

< U, (VI + V2) > < <UV Y >+ <UV z> (-8

We also want this relation to be positive definite so that the

inner product relation is "proper" and we can apply the results of

Appendix A. That is, we want

<U,U> > 0 (5-19)

with the equality holding if and only if U is the null matrix.

Our first problem is how to obtain a scalar valued function from

matrices. The scalars that are naturally associated with a matrix are
the sums of the K-rowed principal minors, which are the coefficients

of the characteristic equation and which also are the symmetrical ele-

mentary functions of the eigenvalues.

Of these scalars, only the first, which is the trace, or the sum

of the diagonal terms, is linear in the sense that the trace of a scalar,

a, times a matrixi A, is a times the trace of A.
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So it is reasonable to expect that we will went to use the trace of

some combination of U and V.

One combination that will work is the product of Eff and U

<U.V> w trIVV.

This evidently obeys Eqs. (B-16), (B-17), and (B-18). That it also is

positive definite can be seen by noting that, if UVj is the ij component

of U, and V0 of V, then

! <UV> " tr I U Vj

-H I/ (B-20)

and

<U U> I lu tU,12 > 0 . (0-21)

Other inner product relations, also based on the trace of the

product of Ut and V, but with appropriate other factors, can also be

found. However, it is not apparent that these are useful, and we shall

not go into them here.

We will note for future reference the important property of the

trace that

trAB - tr . (B-22)

This follows since

tr AB - tr - A i.R.
tj

I ~A B

I B ,AH a tr 4 (B-23)

It is this property that is involved in Eq. (B-17). However, it

should also be noted that it is not true that the trace of the product of

any number of matrices is independent of the order. We do have, by re-

peated application of this theorem, that
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trADC - tr CAB otrAC&

but this is not, in general, equal to tr WB, for example. The trace of

the product of a number of factors is independent of a cyclic permutation

of the factors, but not, in general, of any permutation.

4. THE ADJOINT OPERATOR

Our principal interest in obtaining an inner product relation is to

give us the adjoint operator.

We will show that, under the inner product relation of Sec. 3 above,

T: - T * [Vt,] (B-24)

is the adjoint operator, Tf, of

TV - [V, I (B-25)

This follows since

<U,r ,W> - tr (Ut(VW - WY)}

tr UtVW - tr Ut WV

a tr UtVW - tr VUtW (B-26)

The second term in the last line is a cyclic permutation of the term

above it, and so does not change the trace. It follows then, that

<U,T W> - tr {(UtV - VUt)W)

a tr {(Vu - IJtf)tW)

a < T tU, W> (B-27)

This gives us, then, an adjoint operator under a proper inner

product.
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With this adjoint operator the results of Appendix A, are immediately
applicable. For example, according to Theorem 4, Appendix A, we know that
Eq. (B-I) is soluble for W if and only if U is orthogonal to every matrix

that commutes with Vt.

In particular, if we consider the equation

-" [R,A] - jTRA (8-28)
dz

we find that it is soluble for A if and only if R' - dK/dz is orthogonal
to each of the sequence Rt I, Rt, nfs, ... Hence

<I,R'> a tr R' - 8

<Rt,R'> - tr (RR') - 0

<Rt2,R>- tr (R:R') - 0

etc. (B-29)

Since, for example, from Eq. (B-23)

1
tr (M') - tr (R'R) * -tr (hR' + R'R)2

( {tr (RK)') (B-30)
2

it follows that the derivatives of all the powers of R must have zero

trace. It follows directly that the eigenvalues of R must be constant.

Given, then, that R has constant eigenvolues so that Eq. (B-28) is
soluble, we can, then, solve Eq. (B-28) for A by the methods of the last
section. If T1 is an operator of simple structure, or at least has no.

chain of generalized eigenvectors of zero eigenvalue then there exists a
polynomial function of T., ,(T1) such that

A ) R(T1 )R' + A

where A, is a matrix in the null space of 1,
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It should be noted that T, for example, is the result of applying

Iatwice. Thus it is

T -A [RT1A]

a [R(R,A)] - l 2R, A] (B-31)

where the symbol [1] means the second commutator.

The power of any operator T does not mean the power of a matrix,

unless the operator is matrix multiplication by a matrix. It means,

instead, the repeated application of the operator.

We shall not pursue the development of Eq. (B-28) further at the

moment. We shall only note that, for R to be such as to permit its

variation to be described by Eq. (B-28), it is necessary and sufficient

for the trace of Rk(k a 1, 2, ... ) to be constant.

5. EIGENVECTOBS AND EIGENVALUES, V OF SIMPLE STRUCTUBE

We have found that the operator T1 is linear and homogeneous.

Therefore, it has at least one eigenvector. That is, there is at least

one U0, and one 4,j such that

T Uj. a i . (Ft-32)

(The reason for using the double index will become apparent shortly.)

The fact that the Ut, are matrices does not affect their being

eigenvectors in the space of n x n matrices.

If we use the dyad expansion on the eigenvectors of V, V being

assumed to be of simple structure then

V X V vt K

if K is a metric for which V is at least K-normal. The set (vY} are

K-orthogonal and maximally normalized.
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Then

Ed * , •tvtvf K (B-33)

is an eigenvector of T. with eigenvalue (h- X), for

* (X- Xd)Edj (B-34)

Further, since the set {Eg ) is complete, these are the entire set

of eigenvectors of T,, and T is of simple structure if V is.

The null space of T. is the space spanned by the set {E,,), plus
any additional terms due to degeneracies.

The minimum polynomial of T, is the product

fl(T. - iAjI) (B-35)

over all terms with distinct #ui" However, for each AL we evidently have

Aji Xj - hi a - .ij (B-36)

The minimum polynomial contains the single factor T,, corresponding to
the zero eigenvalue. The other factors then occur in pairs:

(TV - 11)(T, - .I) - T! - (A,)d21 (1-37)

Hence the minimum polynomial contains only odd powers of T,, and can be
written as

f - a, + (as + a1T2 + ... )T')T

* a[(l - O(T)]T (B-38)
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where
1

O(T) - -- (as + asT 2 + ... ) (B-39)

As discussed in Sec. II-C-I, a, does not vanish providing T, is of

simple structure, as we have shown it is if V is of simple structure.

Hence, O(T) exists and Eq. (B-38) is valid. In other words, if V is of

simple structure, we can always find a polynomial function of T,, O(T,),
such that, for any U

TVU - O(T,)T
3 U

We shall not discuss the more general case where V may not be of

simple structure. Essentially the same results apply except that if V

is not of simple structure, then T is not either, and, in fact, must

then have a chain of generalized eigenvectors with zero eigenvalues.

Therefore, we must always use the more general procedure for its

"inversion" as discussed in Appendix A.
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